

Welcome to umd-verification’s documentation!

Contents:

	Overview
	Getting Started

	Basic Usage

	Creating a new verification

	Test execution

	Argument passing
	Runtime args

	Static args

	Instantiation args

	Testing
	bin/myproxy/client-test.sh

	bin/srm/client-test.sh

Indices and tables

	Index

	Module Index

	Search Page

Overview

Getting Started

umd-verification tool uses Python’s Fabric [http://www.fabfile.org/]
library.

There is no need to build or install the application, just download the
source code and interact with the tool through fab commands.

Note that in order to execute fab commands, your current path has to be the
root path of the repository i.e. where fabfile.py exists.

Basic Usage

Listing available deployments

$ fab -l
Available commands:

argus ARGUS server deployment.
argus-ees ARGUS EES daemon deployment.
bdii-site Site BDII deployment.
(..)

Running a deployment

Once selected the most suitable product verification (commands in Fabric)
from the command-listing output above, one can trigger the deployment following
the format:

$ fab <command>:<arg1>=<value1>,<arg2>=<value2>,..

The available runtime arguments are explained in Runtime args
section.

Note that the only mandaatory parameter that is required at runtime is
umd_release.

Creating a new verification

umd/products/ directory contains the .py files where all the
available (see Listing available deployments) deployments are defined.

In order to create a verification for a new product, one has to instantiate
base.Deploy class providing a given set of arguments
(see the full list at Instantiation args):

from umd import base

argus = base.Deploy(
 name="argus",
 doc="ARGUS server deployment.",
 metapkg="emi-argus")

Fabric takes then as available commands every instance of this class found the
product’s directory. The command identifier is the value of name argument,
while doc will contain the description of this command. This is actually the
information displayed when listing commands (see Listing available deployments).

Note that in the case of adding a new .py file under umd/products
directory, this new module has to be included in fabfile.py in order for
Fabric to find the new command/s. Following the example above, we should add

from umd.products.argus import *

to fabfile.py in case that our brand new Python file is called argus.py.

Test execution

After a successful deployment, the last step usually involves testing that the
current deployment actually works. Testing phase corresponds to EGI’s
QC_FUNC_1 and QC_FUNC_2 steps.

Test definition is placed in etc/qc_specific.yaml. The format of each entry
is:

<id>:
 <qc_func_1|qc_func_2>:
 - test: <path_to_directory_or_executable_file>
 description: <test_description_string>
 user: <user_running_the_executables>
 args: <executable_arguments>

Things to note:

	Tests are included in the bin/ directory within the repository. The
currently available tests are described in Testing.

	Path (test parameter) can either point to a directory or to a particular
executable file. In the former case all the executable files found in that
directory will be executed.

	Using args only make sense in case of defining file paths (not directory
paths).

	Environment variables can be passed to the tests at runtime (see
qcenv-* argument at Runtime args).

Argument passing

UMD product verification can be customized by providing arguments at different
stages. The current available arguments and the way to pass them to the tool
are explained below:

Runtime args

Runtime arguments are given through fab argument list. Currently supported
runtime arguments are:

	umd_release

	UMD release to be triggered.

	
	Available options:

	
	3

	UMD-3 release.

	4

	UMD-4 release.

	Default value: No default value, this parameter is required
to be provided at runtime if cmd_release is not used.

	cmd_release

	CMD release to be triggered.

	
	Available options:

	
	0

	CMD-0 release.

	Default value: No default value, this parameter is required
to be provided at runtime if umd_release is not used.

	repository_url

	Repository path with the verification content.

	In YUM-based systems the URL MUST point to where repodata directory is located.

	Multiple values are allowed by prefixing with repository_url.

fab repository_url=<URL1>,repository_url_2=<URL2>,repository_url_other=<URL3>,..

	Arguments passed with equal names will overwrite the value.

	repository_file

	URL pointing to a valid repository file (.list, .repo).

	Multiple values are allowed by prefixing with repository_file.

fab repository_file=<URL1>,repository_file_2=<URL2>,repository_file_other=<URL3>,..

	Arguments passed with equal names will overwrite the value.

	igtf_repo

	Repository for the IGTF release.

	Value must contain a URL pointing to a valid repository file.

	Required value located in the default
configuration file (see Static args).

	yaim_path

	Path pointing to YAIM configuration files.

	Default value: etc/yaim/.

	log_path

	Path to store logs produced during the execution.

	Default value: /var/tmp/umd-verification.

	qcenv_*

	Pass environment variables needed by the QC specific checks.

	The name of the environment variable to be exported
is the name given after the underscore ‘_’ symbol.
Accordingly, the variable’s value is the fab argument’s
value.

fab qcenv_FOO=bar,..

This example will set FOO=bar in the testing environment.

	qc_step

	Run a given set of Quality Criteria steps.

	Multiple values are allowed by prefixing with qc_step.

fab qc_step_1=QC_SEC,qc_step_2=QC_INFO,..

	Arguments passed with equal names will overwrite the value.

	umdnsu_url

	URL (hostname:port) to interface with umdnsu service running
in the SAM-Nagios instance.

	hostcert

	Public key server certificate.

	hostkey

	Private key server certificate.

	dont_ask_cert_renewal

	Do not prompt for certificate renewal (when certificates
already exist)

	ca_version

	Special runtime argument for CA verifications. This value refers to
the CA release version with ‘<major>.<minor>.<patch>’ format.

	enable_testing_repo

	Enable UMD or CMD testing repository.

	enable_untested_repo

	Enable UMD or CMD untested repository.

	params_file

	YAML file with extra parameters to be passed to the configuration
management tool (Ansible, Puppet)

Static args

An additional way to provide the runtime arguments seen above is through the
configuration file etc/defaults.yaml.

This file must exist since it is here where the required arguments are set.
This is why it lives within the application codebase.

The format is YAML so the naming of the runtime arguments seen above differ a
little. Currently supported runtime arguments (and their YAML formatted
equivalent) are:

	base:log_path

	log_path argument.

	umd_release:<distro_version (e.g. redhat5)>

	umd_release argument.

	igtf_repo:<distname (e.g. redhat)>

	igtf_repo.

	yaim:path

	yaim_path.

	nagios:umdnsu_url

	umdnsu_url.

Instantiation args

These arguments are used when defining a new deployment (umd.base.Deploy
instance) in the product’s directory umd/products. Currently supported
instantiation arguments are:

	name

	UMD product (aka Fabric command name).

	Type: str.

	Default value: empty string.

	doc

	Docstring that will appear when typing fab -l.

	Type: str.

	Default value: empty string.

	need_cert

	Whether installation type requires a signed cert.

	Type: boolean.

	Default value: False.

	Additional info: creates a dummy CA to issue public and
private keys needed for the product to be deployed.

	has_infomodel

	Whether the product publishes information about itself.

	Type: boolean.

	Default value: False.

	Additional info: launches
QC_INFO_1 [http://egi-qc.github.io/#INFO_MODEL] checks, so
it’s mandatory for the product publishing data (commonly
through BDII).

	cfgtool

	Configuration tool object.

	Type: umd.base.configure.BaseConfig.

	Default value: None.

	Additional info: contains an instance of any class that
inherits from BaseConfig. Currently available:
- umd.base.configure.YaimConfig

	nodetype

	YAIM nodetype to be configured.

	siteinfo

	File containing YAIM configuration variables.

	umd.base.configure.PuppetConfig

	manifest

	Main “.pp” with the configuration to be applied.

	module_from_puppetforge

	list of modules to be installed
(from PuppetForge).

	module_from_repository

	module (repotype, repourl) tuples.

	module_path

	Extra Puppet module locations.

	qc_mon_capable

	
	Whether extenal monitoring (aka SAM Nagios) can monitor the

	product.

	Type: boolean.

	Default value: False.

	qc_specific_id

	
	ID that match the list of QC-specific checks to be executed.

	The check definition must be included in
etc/qc_specific.yaml.

	Type: str.

	Default value: None.

	qc_step

	Specific step from the Quality Criteria to run.

	Type: str, list.

	Default value: empty list.

	exceptions

	Documented exceptions for a given UMD product.

	Type: dict.

	Default value: empty dict.

Testing

This page documents the tests included with the umd-verification tool. Note
that the tool allows to execute whatever custom checks located in the system.

bin/myproxy/client-test.sh

Retrieves a proxy with VOMS extension from a MyProxy server.

	Accepted arguments: retrieve

	Currently supported VOs: ops.vo.ibergrid.eu, dteam

	Environment variables needed:

	MYPROXY_SERVER

	MYPROXY_USER

	MYPROXY_PASSWD

and the optional:

	VO

that defaults to ops.vo.ibergrid.eu VO.

These variables need to be passed via runtime arguments (as specified in
Test execution):

fab ui:qcenv_MYPROXY_SERVER=foo.example.org,qcenv_MYPROXY_USER=bar,qcenv_MYPROXY_PASSWD=baz,..

	Requires a myproxy already stored in MYPROXY_SERVER with user and
password credentials:

echo $MYPROXY_PASSWD | myproxy-init -S -l $MYPROXY_USER -s $MYPROXY_SERVER -m $VO

bin/srm/client-test.sh

Performs data management checks.

	Accepted arguments:

	#1 Whether the endpoint is localhost or an external one.

	Valid values: localhost, storm, dpm, dcache

	#2 Client to be tested.

	Valid values: lcg-util, dcache-client, gfal2-python, gfal2-util

	Environment variables:

	SRM_HOST optional

	SRM_ENDPOINT optional

points to the SRM URL following the format srm://<srm_host>/<srm_vo_path>

fab ui:qcenv_SRM_ENDPOINT="srm://srm01.ifca.es:8444/srm/managerv2?SFN=/ops.vo.ibergrid.eu"

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to umd-verification’s documentation!

 		
 Overview

 		
 Getting Started

 		
 Basic Usage

 		
 Listing available deployments

 		
 Running a deployment

 		
 Creating a new verification

 		
 Test execution

 		
 Argument passing

 		
 Runtime args

 		
 Static args

 		
 Instantiation args

 		
 Testing

 		
 bin/myproxy/client-test.sh

 		
 bin/srm/client-test.sh

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

